

The new Q.PEAK DUO-G5 solar module from Q CELLS impresses thanks to innovative Q.ANTUM DUO Technology, which enables particularly high performance on a small surface. Q.ANTUM's world-record-holding cell concept has now been combined with state-of-the-art circuitry half cells and a six-busbar design, thus achieving outstanding performance under real conditions — both with low-intensity solar radiation as well as on hot, clear summer days.

Q.ANTUM TECHNOLOGY: LOW LEVELISED COST OF ELECTRICITY

Higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to $19.9\,\%$.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology $^{\rm l}$, Hot-Spot Protect and Traceable Quality Tra.Q $^{\rm TM}$.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).

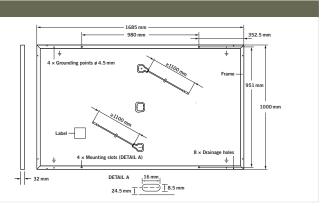
A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

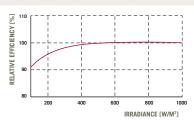
THE IDEAL SOLUTION FOR:



- APT test conditions according to IEC/TS 62804-1:2015, method B (-1500V, 168h)
- See data sheet on rear for further information.

EL	ELECTRICAL CHARACTERISTICS								
P0	WER CLASS			315	320	325	330		
MII	MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC¹ (POWER TOLERANCE +5 W / -0 W)								
	Power at MPP ¹	\mathbf{P}_{MPP}	[W]	315	320	325	330		
	Short Circuit Current ¹	I _{sc}	[A]	10.04	10.09	10.14	10.20		
Minimum	Open Circuit Voltage ¹	V_{oc}	[V]	39.87	40.13	40.40	40.66		
Min.	Current at MPP	I _{MPP}	[A]	9.55	9.60	9.66	9.71		
	Voltage at MPP	\mathbf{V}_{MPP}	[V]	32.98	33.32	33.65	33.98		
	Efficiency ¹	η	[%]	≥18.7	≥19.0	≥19.3	≥19.6		
MII	MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT ²								
Minimum	Power at MPP	\mathbf{P}_{MPP}	[W]	235.3	239.0	242.8	246.5		
	Short Circuit Current	I _{sc}	[A]	8.09	8.13	8.17	8.22		
	Open Circuit Voltage	V _{oc}	[V]	37.52	37.77	38.02	38.27		
	Current at MPP	I _{MPP}	[A]	7.52	7.56	7.60	7.64		
	Voltage at MPP	\mathbf{V}_{MPP}	[V]	31.30	31.62	31.94	32.25		

 $^{1}\text{Measurement tolerances P_{MPP} $\pm 3\%$; $I_{SC}V_{OC}$ $\pm 5\%$ at STC: $1000W/m^{2}$, 25 $\pm 2^{\circ}C$, $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, $NMOT$, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT, spectrum $AM 1.5G$ according to IEC 60904-3 $\cdot ^{2}800 W/m^{2}$, MOT,$


Q CELLS PERFORMANCE WARRANTY

The standard terms of guarantee for the 10 PV companies with the highest production capacity in 2014 (as at: September 2014)

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of \mathbf{V}_{oc}	β	[%/K]	-0.28
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.37	Normal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN								
Maximum System Voltage**	V_{sys}	[V]	1000	Safety Class	II			
Maximum Reverse Current	I _R	[A]	20	Fire Rating	С			
Max. Design Load, Push / Pull	Design Load, Push / Pull		3600/2667	Permitted Module Temperature	-40°C up to $+85^{\circ}\text{C}$			
May Test Load Push / Pull		[Pa]	5400/4000	on Continuous Duty				

Max. Test Load, Push / Pull	[Pa]	5400/4000	on continuous buty		
QUALIFICATIONS AND CERTIFICATES			PACKAGING INFORMATION		
VDE Quality Tested, IEC 61215:2016; IEC 61730:2016	, Application c	lass A	Number of Modules per Pallet	32	
This data sheet complies with DIN EN 50380.			Number of Pallets per 40' High Cube Container	26	
^			Number of Modules per 40' High Cube Container	832	

NOTE: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in Korea

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, Sydney, NSW 2060, Australia | TEL +61 (2) 9016 3033 | FAX +61 (0)2 9455 0873 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/au

